NAG C Library Function Document

nag estimate garchGJR (g13fec)

1 Purpose

nag_estimate_garchGJR (g13fec) estimates the parameters of a univariate regression-GJR GARCH(p, q) process (see Glosten, et al. (1993)).

2 Specification

3 Description

A univariate regression-GJR GARCH(p, q) process, with p coefficients α_i , i = 1, ..., p, q coefficients, β_i , i = 1, ..., q, mean b_o , and k linear regression coefficients b_i , i = 1, ..., k, can be represented by:

$$y_t = b_o + x_t^T b + \epsilon_t$$

$$\epsilon_t | \psi_{t-1} \sim N(0, h_t)$$
(1)

$$h_t = \alpha_0 + \sum_{i=1}^q (\alpha_i + \gamma S_{t-i}) \epsilon_{t-i}^2 + \sum_{i=1}^p \beta_i h_{t-i}, \quad t = 1, \dots, T.$$

where $S_t=1$, if $\epsilon_t<0$, and $S_t=0$, if $\epsilon_t\geq 0$. Here T is the number of terms in the sequence, y_t denotes the endogenous variables, x_t the exogenous variables, b_o the mean, b the regression coefficients, ϵ_t the residuals, γ is the asymmetry parameter, h_t is the conditional variance, and ψ_t the information set of all information up to time t.

The routine nag_estimate_garchGJR provides an estimate for $\hat{\theta}$, the $(p+q+k+3) \times 1$ parameter vector $\theta = (b_o, b^T, \omega^T)$ where $\omega^T = (\alpha_0, \alpha_1, \dots, \alpha_q, \beta_1, \dots, \beta_p, \gamma)$ and $b^T = (b_1, \dots, b_k)$.

mn, nreg (see Section 4) can be used to simplify the GARCH(p,q) expression in equation (1) as follows:

No Regression or Mean

$$y_t = \epsilon_t,$$

 $\mathbf{mn} = 0,$
 $\mathbf{nreg} = 0,$ and
 θ is a $(p+q+2) \times 1$ vector.

No Regression

$$y_t = b_o + \epsilon_t,$$

 $\mathbf{mn} = 1,$
 $\mathbf{nreg} = 0,$ and
 θ is a $(p+q+3) \times 1$ vector.

Note: if the $y_t = \mu + \epsilon_t$, where μ is known (not to be estimated by nag_estimate_garchGJR) then equation (1) can be written as $y_t^{\mu} = \epsilon_t$, where $y_t^{\mu} = y_t - \mu$. This corresponds to the case **No Regression or Mean**, with y_t replaced by $y_t - \mu$.

No Mean

$$y_t = x_t^T b + \epsilon_t,$$

$$mn = 0$$
,

$$nreg = k$$
 and

$$\theta$$
 is a $(p+q+k+2) \times 1$ vector.

4 Parameters

Note: for convenience **npar** will be used here to denote the expression $2+\mathbf{q}+\mathbf{p}+\mathbf{mn}+\mathbf{nreg}$ representing the number of model parameters.

1: **yt[num]** – const double

Input

On entry: the sequence of observations, y_t , t = 1, ..., T.

2: x[num][tdx] - const double

Input

On entry: row t of **x** contains the time dependent exogenous vector x_t , where $x_t^T = (x_t^1, \dots, x_t^k)$, for $t = 1, \dots, T$.

3: **tdx** – Integer

Input

On entry: the second dimension of the array x as declared in the function from which nag estimate garchGJR is called.

Constraint: $tdx \ge nreg$.

4: **num** – Integer

Input

On entry: the number of terms in the sequence, T.

Constraint: $num \ge npar$.

5: **p** – Integer

Input

On entry: the GARCH(p, q) parameter p.

Constraint: $\mathbf{p} \geq 0$.

6: **q** – Integer

Input

On entry: the GARCH(p, q) parameter q.

Constraint: $\mathbf{q} \geq 1$.

7: **nreg** – Integer

Input

On entry: the number of regression coefficients, k.

Constraint: $nreg \ge 0$.

8: **mn** – Integer

Input

On entry: if mn = 1 then the mean term b_0 will be included in the model.

Constraint: $\mathbf{mn} = 0$ or $\mathbf{mn} = 1$.

g13fec.2

[NP3491/6]

9: **theta[npar]** – double

Input/Output

On entry: the initial parameter estimates for the vector θ . The first element contains the coefficient α_o , the next \mathbf{q} elements contain the coefficients α_i , $i=1,\ldots,q$. The next \mathbf{p} elements are the coefficients β_j , $j=1,\ldots,p$. The next element contains the asymmetry parameter γ . If $\mathbf{est_opt} = \mathbf{Nag_Garch_Est_Initial_False}$ then (when $\mathbf{mn}=1$) the next term contains an initial estimate of the mean term b_o and the remaining \mathbf{nreg} elements are taken as initial estimates of the linear regression coefficients b_i , $i=1,\ldots,k$.

On exit: the estimated values $\hat{\theta}$ for the vector θ . The first element contains the coefficient α_o , the next \mathbf{q} elements contain the coefficients α_i , $i=1,\ldots,q$. The next \mathbf{p} elements are the coefficients β_j , $j=1,\ldots,p$. The next element contains the estimate for the asymmetry parameter γ . If $\mathbf{mn}=1$ then the next element contains an estimate for the mean term b_o . The final \mathbf{nreg} elements are the estimated linear regression coefficients b_i , $i=1,\ldots,k$.

10: **se[npar]** – double

Output

On exit: the standard errors for $\hat{\theta}$. The first element contains the standard error for α_o , the next \mathbf{q} elements contain the standard errors for α_i , $i=1,\ldots,q$, the next \mathbf{p} elements are the standard errors for β_j , $j=1,\ldots,p$. The next element contains the standard error for γ . If $\mathbf{mn}=1$ then the next element contains the standard error for b_o . The final \mathbf{nreg} elements are the standard errors for b_j , $j=1,\ldots,k$.

11: sc[npar] - double

Output

On exit: the scores for $\hat{\theta}$. The first element contains the score for α_o , the next \mathbf{q} elements contain the score for α_i , $i=1,\ldots,q$, the next \mathbf{p} elements are the scores for β_j , $j=1,\ldots,p$. The next element contains the score for γ . If $\mathbf{mn}=1$ then the next element contains the score for b_o . The final \mathbf{nreg} elements are the scores for b_j , $j=1,\ldots,k$.

12: **covar[npar][tdc]** – double

Output

On exit: the covariance matrix of the parameter estimates $\hat{\theta}$, that is the inverse of the Fisher Information Matrix.

13: **tdc** – Integer

Input

On entry: the second dimension of the array **covar** as declared in the function from which nag_estimate_garchGJR is called.

Constraint: $tdc \ge npar$.

14: **hp** – double *

Input/Output

On entry: If est_opt = Nag_Garch_Est_Initial_False then hp is the value to be used for the pre-observed conditional variance. If est_opt = Nag_Garch_Est_Initial_True then hp is not referenced.

On exit: If $est_opt = Nag_Garch_Est_Initial_True$ then hp is the estimated value of the pre-observed conditional variance.

15: **et[num]** – double

Output

On exit: the estimated residuals, ϵ_t , t = 1, ..., T.

16: **ht[num]** – double

Output

On exit: the estimated conditional variances, h_t , t = 1, ..., T.

17: **lgf** – double *

Output

On exit: the value of the log likelihood function at $\hat{\theta}$.

18: **stat_opt** – Nag_Garch_Stationary_Type

Input

On entry: If stat_opt = Nag_Garch_Stationary_True then Stationary conditions are enforced. If stat opt = Nag Garch Stationary False then Stationary conditions are not enforced.

19: **est_opt** – Nag Garch Est Initial Type

Input

On entry: If est_opt = Nag_Garch_Est_Initial_True then the routine provides initial parameter estimates of the regression terms (b_o, b^T) . If est_opt = Nag_Garch_Est_Initial_False then the initial estimates of the regression parameters (b_o, b^T) must be supplied by the user.

20: max iter – Integer

Input

On entry: the maximum number of iterations to be used by the optimisation routine when estimating the GARCH(p,q) parameters. If **max_iter** is set to 0 then the standard errors, score vector and variance-covariance are calculated for the input value of θ in **theta**; however the value of θ is not updated.

Constraint: $\max iter \ge 0$.

21: **tol** – double

Input

On entry: the tolerance to be used by the optimisation routine when estimating the GARCH(p,q) parameters.

22: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

NE BAD PARAM

On entry, parameter stat_opt had an illegal value.

On entry, parameter est opt had an illegal value.

NE INT ARG LT

On entry, **nreg** must not be less than 0: $nreg = \langle value \rangle$.

On entry, \mathbf{q} must not be less than 1: $\mathbf{q} = \langle value \rangle$.

On entry, **p** must not be less than 0: $\mathbf{p} = \langle value \rangle$.

On entry, max_iter must not be less than 0: max_iter = <value>.

NE 2 INT ARG LT

On entry, $tdx = \langle value \rangle$ while $nreg = \langle value \rangle$.

These parameters must satisfy $tdx \ge nreg$.

On entry, $\mathbf{tdc} = \langle value \rangle$ while $2+\mathbf{q}+\mathbf{p}+\mathbf{mn}+\mathbf{nreg} = \langle value \rangle$.

These parameters must satisfy $tdc \ge 2+q+p+mn+nreg$.

On entry, $\mathbf{num} = \langle value \rangle$ while $2+\mathbf{q}+\mathbf{p}+\mathbf{mn}+\mathbf{nreg} = \langle value \rangle$.

These parameters must satisfy num $\geq 2+q+p+mn+nreg$.

NE_INVALID_INT_RANGE_2

Value <value> given to mn is not valid. Correct range is 0 to 1.

NE MAT NOT FULL RANK

Matrix X does not give a model of full rank.

g13fec.4 [NP3491/6]

NE MAT NOT POS DEF

Attempt to invert the second derivative matrix needed in the calculation of the covariance matrix of the parameter estimates has failed. The matrix is not positive-definite, possibly due to rounding errors.

NE ALLOC FAIL

Memory allocation failed.

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6 Further Comments

6.1 Accuracy

Not applicable.

6.2 References

Engle R (1982) Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of United Kingdom Inflation *Econometrica* **50** 987–1008

Bollerslev T (1986) Generalised Autoregressive Conditional Heteroskedasticity *Journal of Econometrics* **31** 307–327

Engle R and Ng V (1993) Measuring and Testing the Impact of News on Volatility *Journal of Finance* 48 1749–1777

Hamilton J (1994) Time Series Analysis Princeton University Press

Glosten L, Jagannathan R and Runkle D (1993) Relationship between the Expected Value and the Volatility of Nominal Excess Return on Stocks *Journal of Finance* **48** 1779–1801

7 See Also

None.

8 Example

This example program illustrates the use of nag_estimate_garchGJR to model a GARCH(1,1) sequence generated by nag_generate_garchGJR (g05hmc), a six step forecast is then calculated using nag forecast garchGJR (g13ffc).

8.1 Program Text

```
/* nag_estimate_garchGJR (g13fec) Example Program.

*
 * Copyright 2000 Numerical Algorithms Group.

*
 * NAG C Library
 *
 * Mark 6, 2000.
 *
 */
#include <nag.h>
#include <nag_stdlib.h>
#include <stdio.h>
#include <ctype.h>
```

```
#include <math.h>
#include <nagg05.h>
#include <nagg13.h>
int main(void)
 double *bx=0, *covar=0, *etm=0, fac1, gamma, hp, *ht=0, *htm=0, lgf;
 double *param=0, *rvec=0, *sc=0, *se=0, *theta=0, tol;
 double mean, *x=0, xterm, *cvar=0, *yt=0;
 Integer exit_status = 0;
 Integer i, ip, iq, j, k, nt;
 Integer tdx, tdc, maxit, mn, num, num_startup, npar;
 Integer nreg, seed;
 Nag_Garch_Est_Initial_Type est_opt;
 Nag_Garch_Stationary_Type stat_opt;
 Nag_Garch_Fcall_Type fcall;
 NagError fail;
 INIT_FAIL(fail);
 num = 1000;
 mn = 1;
 mean = 4.0;
 nreg = 2;
 ip = 1;
 iq = 1;
 npar = iq + ip + 1;
 nt = 6;
 tdx = nreg;
 tdc = npar+mn+nreg+1;
\#define\ YT(I)\ yt[(I)-1]
\#define\ THETA(I)\ theta[(I)-1]
\#define SE(I) se[(I)-1]
#define SC(I) sc[(I)-1]
#define RVEC(I) rvec[(I)-1]
#define PARAM(I) param[(I)-1]
\#define\ HTM(I)\ htm[(I)-1]
\#define\ HT(I)\ ht[(I)-1]
\#define ETM(I) etm[(I)-1]
\#define BX(I) bx[(I)-1]
#define CVAR(I) cvar[(I)-1]
#define X(I,J) \times [((I)-1) * tdx + ((J)-1)]
\#define\ COVAR(I,J)\ covar[((I)-1)\ *\ tdc\ +\ ((J)-1)]
 Vprintf ("g13fec Example Program Results \n\n");
  if (!(bx = NAG_ALLOC (nreg, double))
      || !(covar = NAG_ALLOC ((npar+mn+nreg+1) * (npar+mn+nreg+1), double))
      || !(etm = NAG_ALLOC (num, double))
      || !(ht = NAG_ALLOC (num, double))
      || !(htm = NAG_ALLOC (num, double))
      || !(param = NAG_ALLOC (npar+mn+nreg+1, double))
      || !(rvec = NAG_ALLOC (40, double))
      || !(sc = NAG_ALLOC (npar+mn+nreg+1, double))
      ||!(se = NAG_ALLOC (npar+mn+nreg+1, double))
      ||!(theta = NAG_ALLOC (npar+mn+nreg+1, double))
      || !(cvar = NAG_ALLOC (nt, double))
      || !(x = NAG_ALLOC (num*nreg, double))
```

g13fec.6 [NP3491/6]

```
|| !(yt = NAG_ALLOC (num, double)))
     Vprintf("Allocation failure\n");
     exit_status = -1;
    goto END;
 seed = 11;
 gamma = 0.1;
 BX (1) = 1.5;
 BX (2) = 2.5;
 for (i = 1; i \le num; ++i)
    fac1 = (double) i *0.01;
    X (i, 2) = \sin (fac1) * 0.7 + 0.01;
    X (i, 1) = fac1 * 0.1 + 0.5;
 PARAM (1) = 0.4;
 PARAM (2) = 0.1;
 PARAM (3) = 0.7;
 fcall = Nag_Garch_Fcall_True;
 g05cbc(seed);
 num_startup = 200;
 gO5hmc (num_startup, ip, iq, &PARAM (1), gamma, &HT (1), &YT (1),
        fcall, &RVEC (1), &fail);
 if (fail.code != NE_NOERROR)
     Vprintf("Error from g05hmc.\n%s\n", fail.message);
     exit_status = 1;
     goto END;
 fcall = Nag_Garch_Fcall_False;
 g05hmc (num, ip, iq, &PARAM (1), gamma, &HT (1), &YT (1),
         fcall, &RVEC (1), &fail);
 if (fail.code != NE_NOERROR)
     Vprintf("Error from g05hmc.\n%s\n", fail.message);
     exit_status = 1;
     goto END;
 for (i = 1; i \le num; ++i)
     xterm = 0.0;
     for (k = 1; k \le nreg; ++k)
xterm += X (i, k) * BX (k);
     if (mn == 1)
YT (i) = mean + xterm + YT (i);
    else
YT (i) = xterm + YT (i);
  }
 est_opt = Nag_Garch_Est_Initial_True;
 stat_opt = Nag_Garch_Stationary_True;
maxit = 50;
```

```
tol = 1e-12;
  for (i = 1; i \le npar; ++i)
    THETA (i) = PARAM (i) * 0.5;
  THETA (npar + 1) = gamma * 0.5;
  if (mn == 1)
    THETA (npar + 2) = mean * 0.5;
  for (i = 1; i \le nreg; ++i)
    THETA (npar + 1 + mn + i) = BX (i) * 0.5;
  g13fec (&YT (1), &X (1, 1), tdx, num, ip, iq, nreg, mn,
          &THETA (1), &SE (1), &SC (1), &COVAR (1, 1), tdc, &hp,
          &ETM (1), &HTM (1), &lgf, stat_opt, est_opt, maxit, tol, &fail);
  if (fail.code != NE_NOERROR)
      Vprintf("Error from g13fec.\n%s\n", fail.message);
     exit_status = 1;
     goto END;
    }
                Parameter estimates Standard errors Correct va-
  Vprintf ("
lues\n");
  for (j = 1; j \le npar; ++j)
     Vprintf ("%20.4f
                                         (%6.4f) %20.4f\n", THETA (j), SE (j),
PARAM(j));
  Vprintf ("%20.4f
                                (\%6.4f) \%20.4f\n", THETA (npar+1), SE (npar+1),
gamma);
  if (mn)
    Vprintf ("%20.4f
                                 (\%6.4f) \%20.4f\n'', THETA (npar+2), SE (npar+2),
mean);
  for (j = 1; j \le nreg; ++j)
    Vprintf ("%20.4f
                                  (6.4f) 20.4f'n", THETA (npar+1+mn+j), SE(n-
par+1+mn+j), BX(j));
/* now forecast nt steps ahead */
  gamma = THETA(npar+1);
  g13ffc(num,nt,ip,iq,&THETA(1),gamma,&CVAR(1),&HTM(1),&ETM(1),&fail);
  Vprintf ("\n%ld step forecast = %8.4f\n",nt,CVAR(nt));
 END:
  if (bx) NAG_FREE (bx);
  if (covar) NAG_FREE (covar);
  if (etm) NAG_FREE (etm);
  if (ht) NAG_FREE (ht);
  if (htm) NAG_FREE (htm);
  if (param) NAG_FREE (param);
  if (sc) NAG_FREE (sc);
  if (se) NAG_FREE (se);
  if (theta) NAG_FREE (theta);
  if (cvar) NAG_FREE (cvar);
  if (x) NAG_FREE (x);
  if (yt) NAG_FREE (yt);
  if (rvec) NAG_FREE (rvec);
```

g13fec.8 [NP3491/6]

```
return exit_status;
}
```

8.2 Program Data

None.

8.3 Program Results

g13fec Example Program Results

Parameter estimates	Standard errors	Correct values
0.4326	(0.1356)	0.4000
0.0685	(0.0333)	0.1000
0.7173	(0.0672)	0.7000
0.1326	(0.0553)	0.1000
4.1205	(0.1730)	4.0000
1.3950	(0.1658)	1.5000
2.4518	(0.1037)	2.5000

6 step forecast = 2.2549

[NP3491/6] g13fec.9 (last)